

Home Search Collections Journals About Contact us My IOPscience

Young operators in standard orthogonal form

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1977 J. Phys. A: Math. Gen. 10 2191

(http://iopscience.iop.org/0305-4470/10/12/528)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 13:50

Please note that terms and conditions apply.

Corrigenda

Thermal conductivity in a partially degenerate electron plasma

Gouedard C 1977 J. Phys. A: Math. Gen. 10 L143-5

The second term inside the large parentheses of equation (1) should read

$$\frac{4\alpha r_{\rm s}^{\rm i}}{\pi} \frac{k_{\rm F}^{\rm i2}}{4\pi e^2} Z^2 g^{\rm i}(Q_{\rm i}, \nu_{\rm i}).$$

The equation at the top of page L145 should be numbered (6) and the last condition defining X should read

$$\chi = \frac{\hbar}{2(m\mathscr{E}_{\rm F})^{1/2}}.$$

Young operators in standard orthogonal form

El-Sharkaway N G and Jahn H A 1977 J. Phys. A: Math. Gen. 10 659-76

The representation [2 1] may be obtained by putting n = 3 in either [n-1, 1] or in $[2 \ 1^{n-2}]$, but the bra and ket vectors obtained for [2 1] by these two ways differ. It is clearly incorrect to have two different expressions represented by the same symbol. We propose to correct this fault by using *round* bracket bra and ket symbols for those obtained from $[2 \ 1^{n-2}]$, retaining *angular* bracket bra and ket symbols for those obtained from [n-1, 1]. Thus we write

$$\left\langle 3_3^* \right| = \left(\frac{1}{2} \right)^3 = (4/3)A_{12}S_{13}A_{12} = \left| \frac{1}{2} \right|^3 = \left| 3_3^* \right|,$$

$$\left\langle 2_3^* \right| = \left(\frac{1}{3} \right)^2 = (4/3)^{1/2}S_{12}A_{13}, \qquad \left| 2_3^* \right\rangle = \left| \frac{1}{3} \right|^2 = (4/3)^{1/2}A_{13}S_{12},$$

$$\left\langle 3_3 \right| = \left\langle \frac{1}{3} \right| = (4/3)S_{12}A_{13}S_{12} = \left| \frac{1}{3} \right|^2 = \left| \frac{1}{3} \right|^2 = \left| \frac{1}{3} \right|^2,$$

$$\left\langle 2_3 \right| = \left\langle \frac{1}{2} \right| = (4/3)^{1/2}A_{12}S_{13}, \qquad \left| 2_3 \right\rangle = \left| \frac{1}{2} \right|^3 = (4/3)^{1/2}S_{13}A_{12}.$$

In forming Young operators both brackets must be of the same type. Thus we have

$$o_{33}^{3} = \begin{pmatrix} 1 & 2 & 1 & 2 \\ 3 & & 3 \end{pmatrix} = (4/3)S_{12}A_{13}S_{12} = \begin{pmatrix} 1 & 2 & 1 & 2 \\ 3 & & 3 \end{pmatrix},$$

$$o_{22}^{3} = \begin{pmatrix} 1 & 3 & 1 & 3 \\ 2 & & 2 \end{pmatrix} = (4/3)A_{12}S_{13}A_{12} = \begin{pmatrix} 1 & 3 & 1 & 3 \\ 2 & & 2 \end{pmatrix},$$

$$o_{23}^{3} = \left\langle \frac{1}{2} \right| P_{23} \left| \frac{1}{3} \right|^{2} = (4/3)^{1/2} A_{12} S_{13} P_{23} = \left(\frac{1}{2} \right| P_{23} \left| \frac{1}{3} \right|^{2} ,$$

$$o_{32}^{3} = \left\langle \frac{1}{3} \right| P_{23} \left| \frac{1}{2} \right|^{3} = (4/3)^{1/2} S_{12} A_{13} P_{23} = \left(\frac{1}{3} \right| P_{23} \left| \frac{1}{2} \right|^{3} ,$$

where use has been made, where needed, of the reduction formulae. In table 1 it should read

$$o_{ab}^{n} = \begin{pmatrix} 1 & \dots & \dot{a} & \dots & n \\ a & & & & & \end{pmatrix} o \begin{pmatrix} 1 & \dots & \dot{b} & \dots & n \\ b & & & & & \end{pmatrix}$$

and in equation (10.10) read (a-1).